MATH SOLVE

3 months ago

Q:
# Can you please help me guys

Accepted Solution

A:

ANSWER

[tex]y = 3 \cos(2x + 2) + 2[/tex]

or

[tex]y= -3\cos(2x + 2) + 2[/tex]

Any of these two are correct

EXPLANATION

The general cosine function is

[tex]y = a \cos(bx + c) + d[/tex]

where

[tex]|a|=3[/tex]

[tex]a=\pm3[/tex]

is the amplitude.

[tex] \frac{2\pi}{b}= \pi[/tex]

is the period.

This implies that

[tex]b=2[/tex]

[tex] \frac{b}{c} = 1[/tex]

is the phase shift.

This implies that;

[tex]c = 2[/tex]

[tex]d = 2[/tex]

is the vertical shift.

The possible equations are:

[tex]y = \pm \: 3 \cos(2x \pm2)+2[/tex]

[tex]y = 3 \cos(2x + 2) + 2[/tex]

or

[tex]y= -3\cos(2x + 2) + 2[/tex]

Any of these two are correct

EXPLANATION

The general cosine function is

[tex]y = a \cos(bx + c) + d[/tex]

where

[tex]|a|=3[/tex]

[tex]a=\pm3[/tex]

is the amplitude.

[tex] \frac{2\pi}{b}= \pi[/tex]

is the period.

This implies that

[tex]b=2[/tex]

[tex] \frac{b}{c} = 1[/tex]

is the phase shift.

This implies that;

[tex]c = 2[/tex]

[tex]d = 2[/tex]

is the vertical shift.

The possible equations are:

[tex]y = \pm \: 3 \cos(2x \pm2)+2[/tex]